
The Explosive “Inert” Anion CB 11(CF3)12
-

Benjamin T. King and Josef Michl*

Department of Chemistry and Biochemistry
UniVersity of Colorado, Boulder, Colorado 80309-0215

ReceiVed May 8, 2000
ReVised Manuscript ReceiVed August 16, 2000

We have prepared the icosahedral anion CB11(CF3)12
- (1-),

dodecakistrifluoromethylcarba-closo-dodecaborate, whose large
size, absence of strongly basic sites, sterically protected delocal-
ized charge, oxidation resistance, and chemical stability promise
to make it a superior weakly coordinating1 counterion for
extremely acidic, electrophilic, and/or oxidizing cations. However,
Cs+1- is explosive2 and the nearly spherical symmetry of1-

hinders crystallographic characterization of its salts.
In previous attempts to decrease their coordinating ability,

icosahedral carborate anions were partially3 or fully4 halogenated
or fully methylated.5 We expected that perfluorination would
suppress the sensitivity6,7 of the CB11(CH3)12

- anion (2-)5 to strong
acids and oxidants. Halomethyl persubstituted carborate anions
were not previously reported, but the neutral 1,12-C2B10(CHCl2)12

has been described,8 fluorination of 1,12-C2B10(CH3)12 and 1,12-
(H)2-1,12-C2B10(CH3)10 has been investigated,9 and simple trif-
luoromethylborates are known.10

Fluorination11 of Cs+2- in CFCl3 with excess 10% F2/N2 gave
a mixture of partially fluorinated anions CB11C12HnF36-n

-, ∼8 <

n < ∼18.12 Repeated attempts at perfluorination using F2 with
and without irradiation at various pressures, temperatures, and
stirring rates were unsuccessful. Unlike2-,6 the partially fluori-
nated mixture is unaffected by anhydrous HF and hence the
Simmons electrochemical fluorination13 procedure was feasible.
It provided the first samples of1- in ∼1% yield after HPLC
separation.12,14Perfluorination of the partially fluorinated mixture
with Bartlett’s reagent15 (K2NiF6) is superior and provides Cs+1-

in 25% overall isolated yield (96% for each of 36 successive
substitutions).12 Structure (effectiveC5V symmetry) and purity were
established by spectroscopy.16 Attempted combustion analyses
resulted in detonation. The cesium salt has been converted to
others by ion exchange in methanol5 or repeated partitioning (3×)
of an ethereal solution against a concentrated (∼20%) aqueous
solution of a salt of another cation.

Numerous attempts at single-crystal X-ray diffraction analysis
of Cs+, Rb+, PPN+, and Ph2EtMeP+ salts failed because the
essentially spherical anion was disordered (many such structures
of salts of2- have been solved successfully5,17 and the difficulty
appears to be specific to the Teflon-like surface of1-). The low-
symmetry (P1h or P1) Ph2EtMeP+1- crystal yielded a well-defined
cation structure with reasonable thermal parameters, but no
suitable model for the anion was found (R1> 40%).18 Electron
density maps showed1- to be essentially spherical, with a∼8.0
Å outer F sphere diameter and 3.38 Å inner CB11 sphere diameter,
in agreement with the 8.12 and 3.42 Å respective average
diameters in a B3LYP/6-31G*12 optimized structure (Figure 1).

The anion1- is destroyed by heating to 250°C and by Na0 in
anhydrous NH3, but is not affected by 20% KOH/EtOH. It is
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stable in concentrated H2SO4, anhydrous CF3SO3H, and BF3/
anhydrous HF mixtures, and may remain unprotonated in these
acids.19 It is electrochemically inert within the entire electro-
chemical window of MeCN/Bu4N+PF6

- and is not oxidized by
O2

+AsF6
- in anhydrous HF.

The perfluorinated analogue1• of the stable6 neutral radical2•

is calculated12 (B3LYP/6-31+G*//B3LYP/6-31G*) to be stable,
with a structure (Figure 1) very similar to that of1-, and is
expected to be an extremely potent oxidant. The calculated12

(B3LYP/6-31+G*//B3LYP/6-31G*) adiabatic electron detach-
ment energy (in eV)20 of 1- is 8.80; the value calculated for2-

is 4.57 (4.3221); cf. F- 3.40;22,23PtF6
- 7.00( 0.35,23 ∼8;24 IrF6

-

6.50 ( 0.38;23 SbF6
- >6.00;23,25 AuF6

- 9.56,26 >10.0.23 Since
the reversibleE1/2 of 2- in MeCN is 1.6 V vs NHE, this formally
places theE1/2 of 1- at ∼5.8 V, or∼2.9 V above the 2 F- f F2

couple27 and∼2.1 V above the F- f F• couple.28

Unfortunately,1- and, presumably,1• are unsafe. The Cs+ salt
of 1- burns vigorously and has exploded with formation of soot

upon scraping with a metal spatula,2 providing the first example
of an explosive compound based on thecloso-CB11 framework.
Principal products of the explosive decomposition of Cs+1- in
oxygen include BF3, BF4

-, and CO2.29 The calculated heat of
combustion30a of 1- is 2358 kcal/mol, or 2.45 kcal/g (cf. TNT,
3.6 kcal/g), and the calculated heat of explosion30b of 1- is 1272
kcal/mol, or 1.32 kcal/g (cf. TNT, 1.05 kcal/g31), neglecting
changes in Madelung energies (∼100 kcal/mol) and differences
in zero-point energies. For1•, the calculated heat of combustion30c

is 2450 kcal/mol, or 2.55 kcal/g, and the calculated heat of
explosion30d is 1385 kcal/mol, or 1.45 kcal/g. The high-energy
content of1- is due to two chief factors. One is the higher strength
of the B-F bond (154 kcal/mol in BF3) relative to the C-F bond
(116 kcal/mol). The other is the steric crowding of the CF3

substituents.32 In 1- the calculated12,33substituent crowding energy
is 144 kcal/mol, comparable to the strain energy in cubane (157
kcal/mol).34 The introduction of large substituent crowding by
perfluorination has been noted before.35

The anion1- approaches the ideal of inertness more closely
than2-, but the disordered and explosive nature of crystals of its
salts reduce its practicality.
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Figure 1. Space filling and stick representations of the calculated
(B3LYP/6-31G*) structure of CB11(CF3)12

-. F atoms are red, C atoms
are yellow, and B atoms are green. The calculated structure of1• is visually
indistinguishable from that of1-.
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